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Abstract

A method for computing the effect perturbations in

the shape of airfoils in a cascade have on the steady and

unsteady flow through the cascade is presented. First,

the full potential equation is used to describe the behav-

ior of the nonlinear mean (steady) flow and the small

disturbance unsteady flow through the cascade. The

steady flow and small disturbance unsteady flow ver-

sions of the full potential equation are then discretized

using quadrilateral isoparametric finite elements. The

nonlinear mean flow solution is computed using New-

ton iteration. At each step of the Newton iteration, LU

decomposition is used to solve the resulting set of linear

equations. The unsteady flow problem is linear, and is

also solved using LU decomposition. Next, a sensitiv-

ity analysis is performed to determine the effect small

changes in cascade and airfoil geometry have on the

mean and unsteady flow fields. The sensitivity analysis

makes use of the nominM steady and unsteady flow LU

decompositions so that no additional matrices need to

be factored. Hence, the present method is computa-

tionally very efficient. Finally, we demonstrate how the

sensitivity analysis may be used to redesign cascades

for improved aeroelastic stability.

Introduction

As the efficiency of modern aircraft engines contin-

ues to increase, aeroacoustic and aeroelastic consider-

ations play an increasingly important role in the de-

sign of turbomachinery blading. Government regula-

tions and community standards demand reduced lev-

els of noise from aircraft, while competitive pressures

require increased efficiency and mechanical reliability.

Currently, however, the steady aerodynamic design and

the aeroelastic design phases during the development

of compressor, and turbine blading are largely decou-

pied. First, the blade is designed primarily to maxi-

mize steady aerodynamic performance. Then, detailed

aeroelastic studies are performed to determine whether

the blades will meet standards for flutter stability and

fatigue. If the blade fails to meet these requirements,

the blade is redesigned, and the process is repeated.
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This redesign process increases the time and expense

required to design a blade and misses an opportunity

to simultaneously design for steady and unsteady aero-

dynamic performance.

In recent years, the capability to analyze unsteady

flows in cascades has substantially improved. For exam-

ple, a number of linearized analyses of unsteady flows
about loaded airfoils have been developed. These in-

clude potential analyses [1, 2], potential analyses with

vortical gust effects [3, 4], and linearized Euler analy-

ses [5, 6, 7, 8]. Although these models were developed

primarily for use in aeroelastic analyses, they are also
well suited for modeling the aeroacoustic response of

cascades to vortical gusts and potential interaction aris-

ing from nearby blade rows. These linearized flow mod-

els are best viewed as analysis tools rather than design

tools. They are capable of solving the direct problem

where the shape of the airfoil as well as the flow condi-

tions are specified. Unfortunately, except through trial

and error or extensive parametric studies, these codes

do not provide physical insight into how, for example,

to design cascades to be aeroelastically stable or to min-

imize the acoustic response due to wake interaction.

A substantial body of work exists on the inverse de-

sign and optimal design of airfoils. Most of this work,

however, is directed at achieving desirable steady flow

properties. For example, Lighthili [9] developed an in-

verse design method based on eonformal mapping tech-

niques. More recently, a number of investigators have

proposed inverse design techniques based on modern

computational fluid dynamic algorithms (e.g., [10]). A

number of investigators have used nonlinear program-

ming techniques (e.g., [11]), and Jameson has suggested

that the airfoil design problem may be viewed as an

optimal control problem [12]. Researchers have also

developed aeroelastic optimization techniques for rotor-

craft [13], aircraft t14], and turbomachinery [15]. These

analyses, however, have focused on structural optimiza-

tion rather than optimization of the unsteady aerody-

namic behavior.

One of the key ingredients in optimization algo-

rithms is the evaluation of the sensitivity of the quantity

to be optimized (for example, the flutter stability or ef-

ficiency of a cascade) to a small change in a physical pa-

rameter (such as the airfoil shape). Sensitivity analysis

of structures has been an active area of research for the

past decade [16, 17]. Recently, researchers have begun

to develop similar sensitivity analysis techniques for

steady aerodynamic problems. For example, Taylor el



al[18] and Baysal and Eleshaky [19] have computed the

effect of modifying the shape of a nozzle on the flow in

the nozzle. Their work was based on a sensitivity anal-

ysis of the discretized Euler equations. Most recently,

such techniques have been applied to airfoil design [20].
Despite these advances, only a few unsteady sensitiv-

ity analyses have been reported in the literature - for

example the semi-analytical panel method of Murthy

and Kaza [21]. Other unsteady aerodynamic sensitivity

analyses have been performed by numerically differenc-

ing two unsteady flow solutions computed for slightly

different values of some physical parameter. The use of

finite difference sensitivity analyses, however, is less de-

sirable than an analytical method because of the large

computational expense and susceptibility to round-off

and truncation errors associated with finite difference
techniques.

In this paper, we present a new method for comput-

ing the sensitivity of steady and unsteady flows in cas-

cades to small changes in airfoil and cascade geometry.

The nominal steady and unsteady flows are computed

using a full potential solver based on a deforming grid

variational principle and finite element method devel-

oped by Hall [22]. To calculate the sensitivities, a per-

turbation analysis is performed on the nominal steady
and unsteady finite element equations. This leads to a

set of linear matrix equations for the sensitivity of the

steady and unsteady potential due to small changes in

the airfoil shape. The matrix equations to be solved

are the same as the nominal flow matrix equations, but

with new right-hand sides. Thus, if the nominal flows

have been computed using LU decomposition, then no

additional matrices need to be factored, and the sensi-

tivities can be computed by back-substitution. Conse-

quently, the sensitivity of the steady and unsteady po-

tentials can be computed very efficiently. The approach

is general in nature and can be applied to different gov-
erning equations and numerical schemes.

Theory

Nominal Flow Field Description

In the present analysis, the flow through a blade

row is assumed to be inviscid, isentropic, irrotational,

and two-dimensional. In addition, the fluid is assumed

to be an ideal gas with constant specific heats. Thus,

the velocity field can be represented by the gradient of a

scalar potential, ¢. This potential satisfies the unsteady
full potential equation

= LOt2÷2v .v - + v (1)

where 6 is the local speed of sound. The static density

and pressure may be expressed in terms of the velocity
potential as

(2)

X

Figure 1: Typical solution domain used for calculation

of ltow through cascades. Five main boundary types are

moving airfoil, upstream periodic, downstream wake,

upstream far field, and downstream far field.

(v¢)2 + (3)

where PT and PT are the total density and total pres-

sure, respectively, and CT is the total speed of sound.

Equation (3) is simply the unsteady Bernoulli equation.

To complete the problem specification, boundary

conditions must be specified (see Fig. 1). On airfoil

surfaces, the boundary condition is that there can be

no mass flux through the airfoil so that

O_

V¢-fi = _-. fi (4)

where fi is the unit normal to the airfoil surface, and the

surface of the airfoil at any time t is described by the

parameterized position vector _. The wake is consid-

ered to be an impermeable surface so that Eq. (4) also

applies on both sides of the wake. Also, the pressure
must be constant across the wake so that

: 0 (5)

where _j_] is the pressure jump across the wake. Pe-

riodic boundary conditions are applied along the up-

stream and downstream periodic boundaries to reduce



the computational domain to a single blade passage. Fi-
nMly, for unsteady flow problems, nonreflecting bound-
ary conditions must be applied on the upstream and
downstream far-field boundaries to prevent spurious re-

flections of outgoing waves.
The problem of solving for the unsteady flow in the

cascade is divided into two parts. First, we solve for
the nonlinear steady or mean flow through the cascade.

Next, we assume that the unsteadiness in the flow is a
small harmonic disturbance about the mean flow with

frequency w. Therefore, the unsteady perturbation flow
is described by a set of linear variable coefficient equa-
tions.

To increase the accuracy of the unsteady solution

procedure, the unsteady velocity potential is computed
on a deforming computational grid which conforms to
the motion of the moving airfoils. We define two coor-

dinate systems. The first coordinate system (z,y,t)
is the usual inertial coordinate system. The second
coordinate system (_,r/, _') is the computational coor-

dinate system which is attached to the computational
grid. Thus a point fixed in the computational coordi-
nate system (4, r/, r) moves in the physical coordinate

system (x, y,t) as the grid deforms. Because the mo-
tion of airfoils (and hence the grid) is small, the two
coordinate systems differ by a small perturbation, i.e.,

x(_, r/, T) = _ + f(_, r/)ej_r (6)

u(_, 0, T) = _ + g(_, _)d _r (7)

t(_, _, r) = r (8)

where f and g are the complex amplitudes of the small
perturbation. Note that to zeroth order, the physical
and computational coordinate systems are identical.

Similarly, the velocity potential is expanded in a

perturbation series

8(_, 0, r) = _(_, 1/) + _(_, n) d_r (9)

where • and ¢ are the mean flow and small disturbance

unsteady velocity potentials, respectively. Substitution
of Eqs. (6)-(9) into the full potential equation, Eq. (1),
and collection of terms of zeroth and first order gives
the mean flow and small disturbance flow equations.

The mean flow potential equation is given by

] ,10,v2¢=_-_ v¢.v(v¢) 2

where C is the speed of sound, and is a function of

the potential _. Note that Eq. (10) is nonlinear in the
unknown potential _. The small disturbance unsteady

potential equation is given by

V' . RV'¢- V' . [_-_--_(V'¢TV'¢ + Jw¢) V'¢I' 1

_ _ (j_v,¢rv,¢ - _) = b
C 2

(11)

where b is an inhomogeneous term that is a function of
the computed steady flow and the prescribed grid mo-

tion (see [22]), and R is the mean flow density. Here
V' is the gradient in the (_, 7/) coordinate system, i.e.,
V = .IV', where J is the Jacobian of the coordinate
transformation. The small disturbance equation is seen
to be linear in the unsteady potential, ¢, with coeffi-
cients that depend on the nonlinear steady flow poten-

tial, @.
In a completely analogous fashion, the boundary

conditions may be split into mean flow and small dis-
turbance flow parts. For example, the no through flow
condition on the airfoil, Eq. (4), becomes

0¢ 0 (12)
On

for the steady flow problem, and

cgq_= jwf. fi- JV'¢. fi (13)
On

for the small disturbance flow problem. In Eq. (13),

:] = jTj _ I, and f is the vector of grid motion func-

tions, (f,g)T. The first term of the right-hand side of
Eq. (13) represents the upwash due to translation of the
airfoil. The second term is an additional upwash due

to the shearing of the steady potential field near the
airfoil surface. The usual upwash term arising from the
rotation of the airfoil surface, as well as the extrapo-
lation term encountered in fixed grid computations, do

not appear because we perturb the velocity potential in
the coordinate system attached to the deforming grid.

In addition, mean flow and small disturbance flow

boundary conditions must be specified at the inflow,
outflow, periodic, and wake boundaries (see Fig. 1).
For brevity, we omit the details of these boundary con-
ditions. The far-field boundary conditions for the un-

steady flow solver are analytically exact nonreflecting
boundary conditions based on the behavior of the lin-
earized full potential equation in the far-field [23]. The

remaining boundary conditions are substantially the
same as in Ref. [22].

Once one has solved for the mean and small distur-

bance potentials, one can compute the resulting steady
pressure P and unsteady pressure p using the Bernoulli
equation. Expanding Eq. (3) in a perturbation series

gives

P=PT 1-- V@) 2 (14)

and

p= -R [v'¢Tv'¢ + j_¢-- jwf. V'¢ + _V '¢T]V'¢_]
(15)

Note in particular that the unsteady pressure p is pro-
duced by the small disturbance potential ¢, and by the
deformation of the steady potential field ¢. Finally, ap-

propriate integrations of the pressure around the airfoil
give the steady and unsteady lift and moment acting
on the airfoils.



Numerical Solution Technique

One could solve the above differential equations in

a number of ways, e.g., using finite difference, finite

volume, or finite element techniques. In the present

analysis, we discretize these equations using a varia-

tional finite element technique. Hall [22] has shown that

Eqs. (10) and (11) are the Euler-Lagrange equations of

steady flow and small disturbance unsteady flow varia-

tional principles based on a variational principle due to

Bateman [24]. Furthermore, the natural boundary con-

dition of the variational principles are the steady and

small disturbance no through flow conditions, Eqs. (12)

and (13), respectively.

First, consider the solution of the steady flow prob-

lem. The steady flow variational principle is discretized

using quadrilateral isoparametric finite elements. The

auxiliary boundary conditions are discretized using a
combination of finite element and finite difference tech-

niques. The result is a set of nonlinear equations of the
form

N(V;X) = 0 (16)

where N is a vector of nonlinear functions, V is the

vector containing the as yet unknown steady velocity

potential (I) at each of the computational nodes, and X

is a vector containing the location of the computational

nodes (thus the airfoil shape is also contained in X).
To solve Eq. (16) for the nominal airfoil and cascade

geometry, we use Newton iteration. Hence, given the

nth estimate of the solution V n, the (n + l)st estimate
is given by

V-+l = V-_ [bN] -1_--_ N(Vn,X) (17)

Using Newton iteration, the system of nonlinear equa-

tions, Eq. (16), is reduced to a sequence of linear equa-

tions, Eq. (17). Because we use an H-grid in the present

investigation, the matrix 0N/OV is block tridiagonal.

Of course the matrix is not actually inverted, but rather

factored using an LU decomposition algorithm which

takes advantage of the block-tridiagonal structure. The

Newton iteration procedure is very fast with solutions

typically obtained in about five iterations.

Having computed the nominal steady solution, we

next discretize and solve the nominal linearized un-

steady flow problem. The small disturbance varia-

tional principle is discretized, again using quadrilateral

isoparametric finite elements. The auxiliary equations

are discretized using a combination of finite elements

and finite difference operators. The result is a linear

matrix equation of the form

Av = b (18)

where

A = A(V,X,w)

b = b(V, X,f,w)

and v is the vector containing the nodal values of the

unsteady velocity potential ¢. Equation (18) is large,

sparse, complex, and block tridiagonal, and is solved

efficiently using LU decomposition.

Sensitivity Analysis

Now that the nominal steady and unsteady flow

problems have been solved, the next step is to deter-

mine the effect a small change in airfoil or cascade ge-

ometry has on the steady and unsteady flow. Returning

to Eq. (16), if the geometry is perturbed slightly, the

perturbed solution will satisfy the equation

N(V + V';X + X') = 0 (19)

where X is the nominal cascade geometry, X _ is the

perturbation in the geometry, V contains the nominal

steady velocity potential, and V _ is the sensitivity of

the steady potential to perturbations in the geometry.
Expanding Eq. (19) in a perturbation series about the

nominal solution gives

[ Nlv,I N]x,+ 3-£ = o (20)

Solving for the unknown perturbation V' gives

v,= i[ N]x,
Computationally, [ON/OX]X' is very inexpensive to

form. Furthermore, note the similarity of Eq. (21) to

Eq. (17). The same matrix must be "inverted" to ob-

tain the perturbed steady solution that was used in the

last iteration of the Newton solver. Therefore, if the

steady flow has been computed using Newton iteration

with LU decomposition, and the last factored matrix

has been saved, then the sensitivity V' can be obtained

with very little additional computational work.

Having computed the sensitivity of the steady po-

tential to a change in geometry, it is now possible to

compute the resulting sensitivity of the unsteady po-

tential. The solution of the unsteady flow problem due

to small changes in the geometry, frequency, and mode
shape will be of the form

[A(V + V', X + X',w + w')]{v + v'} =

b(V + V', X + X', f + f',w + w') (22)

where fP is the prescribed perturbation in the motion

of the airfoil and grid, w' is the prescribed perturba-

tion in the frequency of the unsteady motion, and v p is

the unknown sensitivity of the unsteady potential. Ex-

panding Eq. (22) in a perturbation series and collecting

terms of first order gives the desired equation for the
unknown v',

[A] v' = + b-K + f'+ G

_ x,+



or more succinctly

[A]v' = b'- [A]'v (24)

Note that the terms X t, f_, and w _ are prescribed, and

V _ is known from the solution of the steady sensitivity

problem.

In principle, one could assemble the matrices

[Ob/0V], [0A/0V], etc. in Eq. (23), then multiply by
the known perturbations and sum the results to obtain

the right-hand side of Eq. (23). However, it is compu-

tationally much more efficient to perform the multipli-

cations and summations during the integration phase

of the finite element construction. Hence, at the el-

ement level, we construct A' and b' directly without

ever forming the derivative terms. The elemental ma-

trix A _ is multiplied by the elemental vector v and the

result subtracted from the elemental vector bq Finally,

the elemental contributions are assembled to form the

global right-hand side to Eq. (24).

As in the steady sensitivity analysis, the computa-

tional effort required to solve for v' is insignificant since

the matrix [A] has already been factored into upper and

lower triangular matrices when the nominal unsteady

solution v was computed.

Finally, we note that although the present sensi-

tivity analysis has been applied to a finite element

discretization of the steady and unsteady full poten-

tial equation, the method can be applied equally well

to finite difference and finite volume discretizations,

and may be applied to other flow models (e.g., Eu-

let, Navier-Stokes) as well. The crucial feature which

makes the present sensitivity analysis computationally

efficient is the use of LU decomposition in the nominal

steady and unsteady flow solvers.

Results

Steady Flow Through a Compressor

To demonstrate the present sensitivity analysis, we

will analyze a linear cascade of NACA four digit airfoils.

The nominM cascade is similar to modern compressor

cascades, and is composed of NACA 5506 airfoils. For

the case considered here, the inflow Mach number M-o_

is 0.5, the inflow angle j3-oo (measured from the axial

direction) is 55*, the stagger angle 19 is 45 °, and the

blade-to-blade gap G is 0.9. Figure 2 shows the nom-

inal steady surface pressure, P, for two different grid

resolutions, a 65 × 17 node grid and a 129 × 33 node grid

(the pressure has been nondimensionalized by the up-

stream density times the inflow velocity squared). The

flow is entirely subsonic with a maximum Mach num-

ber on the suction surface of about 0.61. Note also the

good agreement between the coarse grid and fine grid

solutions.

Having computed the nominal flow through the cas-

cade, we next consider the effect of six different design

parameters on the steady flowfield. Three of these pa-

rameters are from the NACA four digit airfoil defini-

tion: the airfoil thickness, camber, and position of max-
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Figure 2: Steady surface pressure of cascade of NACA

5506 airfoils. M-o_ = 0.5,/_-oo = 55*, O = 45*.

imum camber. Each of these quantities are measured

in fractions of the airfoil chord c. We also consider the

effect of changes in the cascade stagger angle O, and

blade-to-blade gap G. Finally, we introduce an addi-

tional design variable, the reflex. The reflex parameter

modifies the height of the mean line by the magnitude

of the reflex times the chord c times sin(2r¢/c), where

is the distance along the airfoil chord.

Figure 3 shows the sensitivity of the steady surface

pressure to changes in five of the six geometry vari-

ables (the sensitivity to maximum camber location is

not shown). The sensitivities are computed using the

present sensitivity analysis; all results were computed
on a 65 x 17 node grid. To check these results, we

also compute the sensitivities using a finite difference

approach. The finite-difference result is computed by

solving for the steady flow about two slightly different

airfoils, differencing the two, and dividing the result by

the difference in the airfoil parameter. Note the ex-

cellent agreement between the two solutions indicating

that the effect of small changes in the design variables

is linear, and that the present sensitivity analysis cor-

rectly predicts the sensitivities. Also, one sees that the

largest sensitivity in pressure occurs near the leading

edge of the airfoil.

Next, the surface pressure sensitivities were inte-

grated to obtain the sensitivity of the steady lift and

drag (measured normal to and along the chord) and
the moment about the leading edge. These results are

given in Table 1. Also tabulated is the sensitivity of

the lift in the y-direction (the cascade direction). The

steady lift in the y-direction is a measure of the turning

done by the cascade and hence is related to the steady
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Figure 3: Sensitivity of steady surface pressure of cas-
cade of NACA 5506 airfoils to perturbations in thick-

ness, camber, stagger, gap, and reflex. M-o_ -- 0.5,
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Table 1: Sensitivity of steady forces and moment. The

nominal steady lift, L, is 0.2907, the nominal drag,
D, is -0.0177, the nominal moment about the lead-
ing edge, MLE, is --0.1215, and the nominal lift in the
y-direction, Ly, is 0.1931.

Variable L'

Thickness -0.1935

Camber 1.5637

Stagger -0.6632

Gap 0.2743

Max. C. Loc. 0.0873

Reflex -1.5506

D I

-0.0135

0.1446

-0.0642

-0.0244

0.0083

-0.1476

M_E L_

-0.1234 -0.1464

-1.4003 1.2080
-0.0548 -0.5144

-0.0764 0.1767

-0.1060 0.0676

1.9235 -1.2008

work done by the cascade. Table 1 shows that the lift

in the y-direction is most sensitive to changes in cam-
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Figure 4: Aerodynamic damping of cascade of NACA

5506 airfoils vibrating in plunge at frequencies of 0.4,
0.8, and 1.6 for a range of interblade phase angles.

ber, stagger angle, and reflex. Since these parameters
control the metal angle of the trailing edge, and the de-

viation between the exit flow angle and the metal angle
is small for cascades, one would expect them to have a
strong influence on the steady lift.

Unsteady Flow Through a Compressor

Having computed the steady flow through the cas-
cade, we next consider the unsteady flow due to plung-
ing and torsional vibration of the airfoils. Figure 4
shows the aerodynamic damping -'-B of the cascade vi-

brating in plunge at three reduced frequencies and for
a range of interblade phase angles (the aerodynamic
damping is proportional to the imaginary part of the
unsteady lift). Note that for plunging motion, the
system is stable, that is, the aerodynamic damping is
positive for all interblade phase angles. However, the
aerodynamic damping is generally less for low reduced

frequencies (high reduced velocities). The pronounced
peaks in the damping curves correspond to acoustic res-
onance, the point at which acoustic duct modes are
"cut-on."

Figure 5 shows the aerodynamic damping ET for
the case where the airfoils vibrate in pitch about their

midchords (the damping is proportional to the imagi-
nary part of the unsteady moment). Again, the cascade
is least stable at the low reduced frequencies. In par-
ticular, note that the system is unstable (_,T < 0) for
several interblade phase angles at the lowest reduced
frequency w of 0.4.

Consider the case where the airfoils pitch about
their midchords with a reduced frequency w of 0.4 and
an interblade phase angle a of 600 (this is the least sta-

ble interblade phase angle for the reduced frequency w
of 0.4). Figure 6 shows the real and imaginary parts of
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¢xl

O

the complex amplitude of the nominal unsteady pres-
sure, p, on the surface of the reference airfoil for two dif-
ferent grid resolutions, a 65 x 17 node grid and a 129 x 33
node grid. Note that the imaginary part of the pressure
distribution is the part that does work on the vibrating
airfoil. For this case, we see that the imaginary part

of the pressure difference across the airfoil is generally
negative over the front half of the airfoil and positive
over the aft half. Thus, since the airfoil pitches about
its midchord (positive nose up), the unsteady pressure

does positive aerodynamic work (negative aerodynamic
damping) on the airfoil over most of the airfoil.

We next compute the sensitivities of the unsteady
surface pressure to changes in geometry. Figures 7
and 8 show the real and imaginary parts, respectively,
of the sensitivity of the unsteady pressure to small

changes in six of seven design variables (the effect of
the location of maximum camber is not shown, and the
reduced frequency w is included as a design variable
for unsteady flow calculations). All results were com-

puted on a 65 x 17 node grid. The sensitivities are also
compared to a finite difference calculation. Note the ex-
cellent agreement between the two solutions indicating
that the present method correctly predicts the sensi-
tivities. Also, the imaginary parts of the sensitivities
to changes in stagger and reflex have pressure distribu-
tions that are fairly large in magnitude and have shapes
that would tend to do work on pitching airfoils. That

is, the sign of the pressure difference across the airfoil

changes at roughly the midchord of the airfoil.
Having computed the sensitivities of the surface

pressure to design variables, we can now integrate to
obtain the sensitivities of the aerodynamic damping•
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Figure 8: Real and imaginary parts of unsteady sur-
face pressure of NA CA 5506 airfoils pitching about their
midchords, w = 0.4, _r = 60 °.

Table 2 shows the sensitivity of the aerodynamic damp-

ing to small changes in the design variables. The col-
umn labeled "Unconstrained" gives the sensitivity of

the aerodynamic damping to changes in a single pa-
rameter. Here -2'T is the sensitivity of the aerodynamic

damping due to pitching motions, and E'B is the sen-
sitivity of the aerodynamic damping due to plunging
motion. In both cases, the nominal reduced frequency

is 0.4. Note that as expected, stagger and reflex

have a strong influence on the aerodynamic damping in

pitch. Also note that for both pitching and plunging,
the sensitivity of the damping to changes in frequency

is positive. This is consistent with the results shown in

Figures 4 and 5.
The results in the "Unconstrained" column of Ta-

ble 2, however, can be somewhat misleading since
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Figure 8: Imaginary part of sensitivity of unsteady sur-
face pressure of NACA 5506 airfoils pitching about their
midchords due to perturbations in thickness, camber,
stagger, gap, reflex, and frequency, w = 0.4, _r = 60 o.

changing each design variable independently also
changes the steady work done by the cascade and

changes the steady incidence at the leading edge of the
airfoil. Generally, one would want to leave these quan-
tities unchanged. To avoid this difficulty, it is useful
to let two of the design variables "float" so that the

steady lift Ly and the leading edge incidence a remains

constant. In this study, we allow the stagger angle O
and the reflex r to float. For example, then, if we vary

the gap G, we must vary the stagger angle and reflex
such that

c3L_ , OL_ rJ OLv ,b-g° +-b-; +-g-8-c =o (25)

Oa , Oa , Oa ,

Equations (25) and (26) give two equations for the two
unknowns O' and r' in terms of the perturbation G'
and the sensitivities. In Table 2, the column labeled
"Constrained" refers to the sensitivities to each vari-

able using this procedure. For both the pitching and
plunging cases, it is clear that changing the camber has
a very strong effect on the aerodynamic damping. In
the pitching case, an increase in camber is destabilizing;
in the plunging case, an increase in camber is stabiliz-
ing.
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Table 2: Sensitivity of aerodynamic damping. The
nominal aerodynamic damping in torsion, _.T, is

--0.0214, and the damping in plunging, EB, is 0.8882.

UnconstrainedVariable = T --B

Thickness -0.2208

Camber -0.0018

Stagger -0.6672

Gap 0.1723

Max. C. Loc. -0.0383

Reflex [ 0.7362Frequency 0.4030

0.3046

-1.9868

1.4079

-0.0237

-0.1143

2.0131

1.3337

Constrained

_T --B

0.1344 -0.1879

-5.2561 3.3668

-0.2564 0.5707

0.0300 -0.0159

0.4030 1.3337

to reduce the stagger angle by approximately 1.4 ° and
increase the reflex by 0.0064 units. Although the sen-

sitivity analysis predicts that these changes alone will
make the airfoil stable, the sensitivity analysis also pre-

dicts a large steady pressure gradient on the suction sur-
face near the leading edge. To smooth out the pressure
distribution, we increase the thickness by 0.02 units,
which in turn requires us to reduce the stagger by ap-

proximately 0.52 ° and add 0.0014 units of reflex.
For the second redesign (Redesign B), we reduce the

gap G by 0.1, Again Table 2 predicts that this change
will make the cascade stable, and requires that we re-
duce the stagger angle by approximately 3.10 and add

0.0261 units of reflex.
Figure 9 shows the computed steady surface pres-

sure on the nominal and redesigned airfoils. Also shown

is the pressure predicted by the linear sensitivity anal-
ysis. The good agreement between the two indicates
that nonlinear geometrical effects are small. Although
the steady lift on the airfoil in the y-direction has only

slightly changed, the pressure distribution has changed

significantly. Note that the pressure gradient on the
suction surface is larger for both redesigned airfoils.

Both redesigns are therefore likely to increase some-
what the aerodynamic losses of the cascade.

Figure 10 shows the real and imaginary parts of
the unsteady pressure on the surface of the redesigned
airfoils. Although the real part of the pressure distri-
bution remains largely unchanged, the imaginary part

shows significant changes, particularly on the suction
surface. Note that the agreement between the sensitiv-

ity analysis prediction and the actual pressure distri-
bution, while not quite as good as in the steady case,
is still remarkably good. The actual damping of the

Redesign A cascade is 0.0086, indicating that the new
cascade is stable. The damping of the Redesign B cas-
cade is 0.0030, so this cascade is also stable.

Figure 11 shows the aerodynamic damping of the
redesigned airfoils for a reduced frequency w of 0.4 for
a range of interblade phase angles a. The five lines in
the figure correspond to the original nominal damping,
the damping of the redesigned airfoils predicted by the
sensitivity analysis, and the actual damping of the re-

designed airfoils. Note that both redesigned airfoils are
stable for all interblade phase angles. In addition, the

sensitivity analysis prediction gives excellent estimates
of the actual damping of the redesigned airfoils.

Redesign of a Compressor for Aeroelastic

Stability

Next, we use the constrained sensitivity analysis to
redesign an unstable cascade to make it stable. The
nominal cascade has a reduced frequency w of 0.4 and
an interblade phase angle er of 60°. We note from Ta-
ble 2 that decreasing the camber has a stabilizing in-
fluence on torsional flutter. Thus, for the first redesign

(Redesign A), we reduce the camber by 0.004 units.
Using the constraint relations above, this requires us

Computational Efficiency

Finally, a note about computational times. Table 3
shows the CPU time required to perform various calcu-

lations using the present method on a Silicon Graphics

Indigo R4000 workstation. All calculations were per-
formed using a 129 × 33 node computational grid. The

steady sensitivity analysis requires only a fraction of the
CPU time necessary to perform a single nominal steady
calculation. For the seven design variables considered
here, the unsteady sensitivity analysis required about
six times the CPU time as a single nominal unsteady
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calculation, but only about half of what was required

for a finite difference sensitivity analysis. Furthermore,

the present sensitivity analysis, unlike the finite dif-

ference analysis, is not susceptible to truncation and
round-off errors.

Conclusions

In this paper, a new method for calculating the sen-

sitivity of steady and unsteady flows in cascades to

small changes in airfoil and cascade geometry is pre-
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Table 3: Computational times for present method using
129 x 33 node grid.

Procedure I CPU Time (sec)

Present Method

Nominal Steady

Nominal Unsteady

Steady Sensitivity (6 var)

Unsteady Sensitivity (7 var)

23.6

7.2

4.7

42.5

Finite Difference

Steady Sensitivity (6 var) 283.6

Unsteady Sensitivity (7 var) 100.4

sented. First, the steady and small disturbance un-

steady flow through the cascade is modeled using the

steady and linearized versions of the full potential equa-

tion. A variational finite element technique is used to

discretize the steady and small disturbance unsteady

potential equations. Newton iteration is used to solve

the steady equations with LU decomposition used at

each step; the small disturbance equations are linear

and solved with a single LU decomposition.

The sensitivities of the steady and unsteady flow

fields to changes in geometry are computed by perturb-
ing the finite element scheme about the nominal solu-

tion. The resulting matrix equations for the steady and

unsteady sensitivity solutions have similar forms to the

nominal flow equations. In fact the matrix equations
to be solved have matrices that are identical to those in

the nominal flow solvers. Thus, once the nominal flows

l0



havebeencomputed,thesensitivityanalysisrequires
verylittleadditionalcomputertime.Furthermore,the
methodisgeneralandcanalsobeappliedto finitedif-
ferenceandfinitevolumecalculationssolongasthe
nominalflowsolversuseLUdecomposition.

Finally,wehavedemonstratedthatthesensitivity
analysismaybeusedtoguideintheaeroelasticredesign
of airfoils.In theexamplepresentedin thepaper,a
cascadethatwasaeroelasticallyunstablein torsionwas
redesignedto beaeroelasticallystable.
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